Fast (Diagonally) Downward

Malte Helmert
Institut fiir Informatik, Albert-Ludwigs-Universitit Freiburg
Georges-Kohler-Allee, Gebidude 052, 79110 Freiburg, Germany
helmert @informatik.uni-freiburg.de

Abstract

Fast Downward is a propositional planning system based on
heuristic search. Compared to other heuristic planners such
as FF or HSP, it has two distinguishing features: First, it is
tailored towards planning tasks with non-binary (but finite
domain) state variables. Second, it exploits the causal de-
pendency between state variables to solve relaxed planning
tasks in a hierarchical fashion.

Fast Downward won the propositional satisficing track of the
4th International Planning Competition (IPC4). At the 5th
International Planning Competition (IPC5), a (mostly) un-
changed version of the planner was entered to provide a ref-
erence point for comparing to the earlier state of the art.

Introduction

Fast Downward is a planning system based on heuristic state
space search, in the spirit of HSP or FF (Bonet & Geffner
2001; Hoffmann & Nebel 2001). It makes use of the causal
graph (or CG) heuristic, introduced in an ICAPS 2004 paper
(Helmert 2004). Fast Downward itself is described in much
detail in a JAIR article (Helmert 2006). For this reason, we
only provide a very brief overview in the following.

Structure of the planner
Fast Downward consists of three separate programs:
1. the translator (written in Python),
2. the knowledge compilation module (written in C++), and
3. the search engine (also written in C++).

To solve a planning task, the three programs are called in
sequence; they communicate via text files.

Translator

The purpose of the translator is to transform the planner in-
put, specified in the propositional fragment of PDDL (in-
cluding ADL features and derived predicates, but not the
preferences and constraints introduced for IPCS5), into a
multi-valued state representation similar to the SAS™ for-
malism (Backstrom & Nebel 1995).

The main components of the translator are an efficient
grounding algorithm for instantiating schematic operators
and axioms and an invariant synthesis algorithm for deter-
mining groups of mutually exclusive facts. Such fact groups

are consequently replaced by a single multi-valued state
variable encoding which fact (if any) from the group is sat-
isfied in a given world state, rather than encoding the truth
of each fact in a separate state variable.

The translator can be used independently from the rest of
the planner, and has already proved to be a useful component
in planning systems not related to Fast Downward (van den
Briel, Vossen, & Kambhampati 2005).

Knowledge Compilation

Using the multi-valued task representation generated by the
translator, the knowledge compilation module is responsible
for building some data structures which play a central role
in Fast Downward’s search engine.

First and foremost, it determines the causal graph of
the input task, whose purpose is to encode the information
which state variables are relevant to changing which other
state variables of the task. Together with domain transition
graphs for each state variable, which encode the ways in
which a given state variable may change its value through
operator applications, it forms the basis for the recursive
computation of the CG heuristic.

The knowledge compilation module also generates suc-
cessor generators and axiom evaluators, data structures for
efficiently determining the set of applicable actions in a
given state of the planning task and for evaluating the val-
ues of derived state variables.

Search Engine

Using these data structures, the search engine attempts to
find a plan using greedy best-first search with some enhance-
ments such as the use of preferred operators (similar to help-
ful actions in FF) and deferred heuristic evaluation, which
mitigates the impact of large branching factors in planning
tasks with accurate heuristic estimates.

The search engine can also be configured to use sev-
eral heuristic estimators (namely, the CG heuristic and the
FF heuristic) in tandem within an algorithm called multi-
heuristic best-first search. This search algorithm attempts
to exploit strengths of the utilized heuristics in different
parts of the search space in an orthogonal way. The plan-
ner configuration using multi-heuristic best-first search is
called Fast Diagonally Downward, because it combines the



“downward” thrust of the CG heuristic with the “forward”
thrust of the FF heuristic.

Fast Downward also includes a third search algorithm
called focused iterative-broadening search, but as of this
writing, it is not clear whether or not this algorithm will be
used for the IPC5 benchmark set.

New Developments

Since IPC4, apart from some bug fixes, we made only one
modification to Fast Downward.

In some planning domains, it is clear from the multi-
valued task description that some state variables can change
their value in essentially arbitrary ways without further con-
ditions on other state variables. For example, state variables
which encode vehicle locations in transportation domains
such as LOGISTICS or DEPOTS never have causal depen-
dencies on other state variables in the task (i.e., they are
source nodes in the causal graph) and can never assume a
value from which the initial value cannot be restored any-
more (i. e., their domain transition graphs are strongly con-
nected).

In tasks where such state variables are present, Fast
Downward can now apply safe abstraction to remove the
state variables from the planning task altogether and plan in
the resulting abstract planning task. After planning, the nec-
essary actions to convert the generated abstract plan to the
concrete level can be inserted in a straight-forward manner.

Safe abstractions can substantially speed up planning; in-
deed, in very simple cases like the LOGISTICS domain, re-
peated application of safe abstraction can completely solve
the planning task, without requiring any search. However,
there is often a price to pay in plan quality.

At IPCS5, we have run Fast Downward both in a version
that does use safe abstractions where possible and in a ver-
sion which never uses them. The latter version of the planner
is identical to Fast Downward at IPC4 (modulo bug fixes)
and thus serves as a useful reference point.

References

Béckstrom, C., and Nebel, B. 1995. Complexity results for
SAST planning. Computational Intelligence 11(4):625—
655.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5-33.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161-170.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research. Accepted for
publication.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253-302.

van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for Al plan-
ning: A branch-and-cut framework. In Proc. ICAPS 2005,
310-319.



