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Abstract

Planning as satisfiability is one of the best ap-
proaches to optimal planning. In addition to being
effective and efficient on many planning domains,
this approach is general, in that a generic method for
satisfiability (SAT) can be used. As a result, it is able
to take advantage of the general research devoted to
SAT. Nevertheless, the potential of this approach has
not been fully exploited. In the MaxPlan planner, we
develop an efficient SAT solving algorithm that ef-
fectively exploits the structure of planning applica-
tions and decomposes the original SAT problem into
a series of much simpler SAT subproblems. The de-
composed SAT approach has been shown to be sig-
nificantly more efficient than the previous approach
which uses a generic SAT solver as a black-box with-
out exploiting the problem structure. Several other
novel techniques, including backward level reduc-
tion, accumulative learning of clauses, and search-
space pruning based on multi-valued domain for-
mulation, are also developed to further improve the
search efficiency for both satisfiability solving and
unsatisfiability proving.

Introduction

on is to prove unsatisfiability, which could be expensive be-
cause the entire search space may need to be explored. This
observation inspires us to search from the opposite dinecti

i.e. to reduce the estimated plan length from an upper bound.
When the plan is long, however, finding a feasible solutian ca
still be expensive. Effective strategies for reducing ctaxity

are needed.

b) By transforming a planning problem into a SAT prob-
lem and solving the problem in a "blackbox” fashion by a SAT
solver, the structural and goal information in the planmingp-
lem is discarded. In contrast, heuristic search-basedpign
methods typically combine directed forward search withkbac
ward chaining to explicitly exploit information in the plaimg
goals. This motivates us to study and utilize the interrraicst
ture of the SAT encoding.

c) The existing SAT planners solve a SAT problem as a
whole, which becomes prohibitively expensive for largelpro
lems. One objective in the design of MaxPlan is to decompose
a planning problem based on its structure in order to reduce
search complexity.

d) To achieve the optimal time steps, the current realiratio
of planning as satisfiability follows an incremental schame
which the number of time steps is increased by one after each
failed iteration. A careful examination of the process d# th
current approaches has revealed key insights into thisrgene
planning paradigm. First, the SAT problem instances ddrive
at different time steps share similar structures. Secdmel, t

knowledge learnt from solving SAT instances for shorteretim
steps can be accumulated and used to speed up the processes
for solving SAT instances of longer time steps. However, the
existing SAT planners generate SAT problem instances inde-
pendently from scratch and solve them in isolation so that
knowledge learnt during previous iterations was lost.

The design of MaxPlan aims at overcoming the above limi-
tations.

MaxPlan is an optimal planner for STRIPS-like propositiona
planning problems. It is optimal in terms of the number of par
allel steps. It, in essence, follows the paradigm of plagnin
as satisfiabilityfSelman & Kautz, 199R which has emerged
as one of the most effective formulations for optimal plan-
ning. The method of planning as satisfiability first transiea
STRIPS planning problem into a satisfiability (SAT) problem
and then solves the SAT problem using a generic SAT solver.

Representative planners under the paradigm of planning .
satisfiability include BlackboXKautz & Selman, 1996and ai Overall Architecture of MaxPlan
SATPLAN [Kautz,]. The latest version of SATPLAN, SAT- Based on an action-based SAT formulation, MaxPlan employs
PLANO4, has won the First Place prize in the optimal track ofa new decomposition scheme to decompose a planning prob-
the Fourth International Planning Competition (IPC4). i&s  lem into a series of SAT subproblems, one for each subgoal
its success, the current best realization of planning @sfisat  variable, in order to reduce the search complexity. Goal-
bility still has the following limitations. oriented rules for selecting variables in SAT solvers ateoin

a) SATPLAN performs dorward level expansion search  duced to exploit logic structures of planning problems. édth
that keeps increasing the estimated plan length and for eactovel techniques, includinigackward level reduction, accu-
fixed length finds a solution or proves the problem unsolvablemulative learning, and search space pruning based on amulti
We have noticed that most of the computing time that it spendsalued formulation, are also developed and integrated avith



generic SAT solver to further speed up the solution process. for identifying independent variables. Identifying prebi
The overall process of MaxPlan works as follows. structural information is a hard problem. Being generimalg
1. Estimate an upper bound of the optimal plan length. Théithms, these SAT solvers try to produce conflicts by branghi
search keeps tightening the upper bound until a plar" shorter clauses (such as heuriiti& Anbulagan, 1997 or
length has been proved unsolvable. the Jeroslow-Wang ruliHooker & Vinay, 1999), or attempt
. . : . to detect conflicts by applying the locality of conflicts (huas
2. Foragiven plan length, compile the input planning prob-y,s \/51ps heuristigMoskewiczet al, 2001). These general
lem into a SAT formulation. heuristics can hardly detect structural properties of artzg
3. Solve the derived SAT problem using a novel SAT solverproblem.
integrated with goal-oriented decomposition and search

space pruning. Quit if the current plan depth is proven Ovi "
unsatisfiable. 4 gé)la!ngnented Decomposition for SAT
\'/

4. After a plan depth is solved, use an accumulative learning
scheme for taking advantage of the structural similaritiesThe majority part of the computation complexity of MaxPlan
among the SAT instances. Accumulate the knowledge (iies in solving the SAT problems at different parallel steps
the form of learnt clauses and pruning rules) to acceleratén our implementation, we use a generic SAT solver, Min-
the processes of solving sebsequent instances. iSAT [Eén & Biere, 2003, enhanced with our new strategies,

5. Reduce the estimated optimal plan length and repeat frofS the SAT engine for MaxPlan. Note that the decomposition
step 2. and space pruning strategies proposed in MaxPlan are denera

MaxPlan significantly differs from the previous SAT-based and can be_ incorporated into other .SAT solvers,
. S el As mentioned, SAT problems derived from real-world plan-
planners in the overall direction of plan-length estimatmnd

inter-level learning. Furthermore, instead of using a giene ning problems are often highly structured and contain a sub-

"blackbox” SAT solver, MaxPlan integrates in the SAT solver Etagilﬁérp\?;?%glgg\;ﬁ:ff Iisuvxﬂosr% v:luaet;r?ar:nbgtgs:ewmrlgse
a number of effective strategies for exploiting the struetof y g bropag : o

: these variables adependentariables. In contrast, those vari-
a planning problem. ables whose values cannot be directly inferred from theassi
. - ments of other variables amedependenvariables. Since the
3 Ba(_:kward Level Red_UCt'On and Analysis of assignments of independent variables determine the vafues
Action-Based Encoding most dependent variables, the number of assignments that ne

MaxPlan uses an approach to set the initial number of parafo be tried can be reduced significantly if we branch on inde-
lel steps which is different from that used by the previou SA pendent variables first. In MaxPlan, independent variadles
planners. Since the previous SAT planners use forward levdhose appearing in the G clauses, and dependent variakles ar
expansion, they typically apply the Graphplan apprd&m  the ones notin the G clauses.

& Furst, 1997 to construct a relaxed planning graph to esti- The complexity of SAT solving can be significantly reduced
mate alower bound of the optimal parallel length. In contrast, if we ignore the assignments of some independent variables.
since MaxPlan uses backward level reduction, it estimates al herefore, in MaxPlan, we proposeeal-oriented decompo-
upper bound using a suboptimal planner to find a suboptimalition scheme to decompose the SAT problem into a series of
sequential plan and parallelize it. We use the Fast Forwarthuch simpler SAT subproblems with incremental involvement
planner[Hoffmann & Nebel, 200[Lin our current implemen-  of the goal-oriented independent variables.

tation. Suppose that there aré subgoals, we iteratively solva’

To transform a planning problem into SAT, we use the sameubproblems. In solving th&" subproblem, we set the vari-
action-based encoding as used by SATPLANO4, which conables for the first subgoals true, and set free the other subgoal
verts all fact variables to action variables. variables. After we solve the instance, based on the solutio

We have closely studied the action-based SAT encoding. Weve increase the priority scores of all action variables wehos
classify the clauses into several classes, includingtblauses assignments are true by a constant amount in MiniSat in order
that are binary clauses generated from mutual exclusibes, t to force to branch on these action variable and set themo tru
A clausesghat specifies the dependencies among actions, arfifst in solving the next subproblem. Therefore, in eachaiter
the G clausegshat specifies subgoals. tion, we focus on solving one subgoal. In this process, we als

Most (but not all) variables in E clauses can be instantiatedry to explore first the partial solution space that is clasthe
by applying unit propagation in a SAT solver. In other words,ones searched in the previous iterations by giving presitd
a majority of independent variables appear in the G clauseshe related~ clauses.

As a result, the variables in the binary E clauses have a lower There are several advantages of the goal-oriented decompo-
priority to be chosen. Therefore, the three classes of elus sition approach. Our preliminary experimental analysisiha
should be treated differently. The G clauses should beddeat dicated that after the G variables have been fixed, the proble
as “core clauses” in SAT solving. In general, the G clausés on can be solved quickly by unit propagation. This means that
constitute a very small portion (typically less then 2 patsg  the G variables are the most critically constrained vaeslit

of all the clauses. Focusing on branching those variabkbgs th a planning problem. By incrementally increase the number of
appear in the G clauses first can significantly reduce thelsear active criticalG variables in a series of subproblems, the com-
space in SAT solving. plexity of solving each subproblem is significantly reducad

Most, if not all, existing SAT solvers lack mechanisms for a result, the total complexity of solving all decomposed-sub
exploiting structural information of real-world instarscand  problems is still much smaller than the complexity of sodyin



the original SAT problem without decomposition. after each iteration, we simply modify and patch the presiou
The proposed goal-oriented decomposition approach is difencoding to specify the new constraints of the next itematio
ferent from incremental planning. A key difficulty of incre- Therefore, the time for encoding can be significantly reduce
mental planning is that it fixes the solutions of solved sobpr and such saving can be significant for large planning problem
lems and often gets stuck at infeasible deadends. Our decorivtore importantly, we can retain all the learnt clauses (et r
position approach, on the contrary, allows backtrackirdjian lated to goal clauses) in all the previous iterations andse-
a complete algorithm that can be used to prove unsatisfiabili them in the next iteration. As a result, most learnt clausds o
need to be learnt once, which saves running time.
5 Search Space Pruning It is important to_note.that the learnt clause§ that are re-
N _ N tained for the next iteration may be learnt again in the next
In addition to goal-oriented decomposition, we develop twoiteration if they were not retained. Most existing effici&iT
novel strategies to further reduce the search space of S so solvers have efficient mechanisms for clause learning that s
ing. A common feature of the two strategies is that they bottport managing and deleting learnt clauses intelligenthere-
prune the search space by adding more constraints to the profyre, our accumulative learning scheme incurs very littidia
lem formulations. tional memory over the original SAT solver.

5.1 Mutual Exclusion Constraints from 6 Conclusions

Multi-Valued Formulations .

. . In summary, MaxPlan follows the general paradigm of plan-
In the SAT formulation, the E clauses encode binary mutuahing as satisfiability and incorporates significant extensi
exclusion relations among actions. It is very difficult and e First, MaxPlan uses backward level reduction instead of the
pensive to detect all mutual exclusions, and most previdds S previous forward expansion approach. Second, MaxPlan uses
planners onIy detect a small subsets of mutual exclusiams. la novel goa|_oriented decomposition method, deve|opdqjj;n t
MaxPlan, we use a new approach that can generate more mgaper, to greatly improve the efficiency of solving SAT prob-
tual exclusions efficiently. The approach uses a multi@dlu |ems derived from planning. This decomposition method ex-
domain formulation (MDF) that translates the binary fagt-re ploits structures of a planning problem and the effects bf di
resentation into a more compact representation with multiferent classes of clauses in the SAT encoding. Finally, teve n
valued variables. Each variable typically represents sarin  strategies, MDF-based constraints and accumulativeitegrn

antgroup for an object, and the variable can only take oneeval are developed to further prune the search space.
in the group at any time. For example, a truck may only be at

one location at any time. The location of a truck is a variable References
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