
MaxPlan: Optimal Planning by Decomposed Satisfiability andBackward Reduction

Zhao Xing, Yixin Chen, and Weixiong Zhang
Department of Computer Science and Engineering

Washington University in St. Louis
Saint Louis, MO 63130

{zx2,chen,zhang}@cse.wustl.edu

Abstract

Planning as satisfiability is one of the best ap-
proaches to optimal planning. In addition to being
effective and efficient on many planning domains,
this approach is general, in that a generic method for
satisfiability (SAT) can be used. As a result, it is able
to take advantage of the general research devoted to
SAT. Nevertheless, the potential of this approach has
not been fully exploited. In the MaxPlan planner, we
develop an efficient SAT solving algorithm that ef-
fectively exploits the structure of planning applica-
tions and decomposes the original SAT problem into
a series of much simpler SAT subproblems. The de-
composed SAT approach has been shown to be sig-
nificantly more efficient than the previous approach
which uses a generic SAT solver as a black-box with-
out exploiting the problem structure. Several other
novel techniques, including backward level reduc-
tion, accumulative learning of clauses, and search-
space pruning based on multi-valued domain for-
mulation, are also developed to further improve the
search efficiency for both satisfiability solving and
unsatisfiability proving.

1 Introduction

MaxPlan is an optimal planner for STRIPS-like propositional
planning problems. It is optimal in terms of the number of par-
allel steps. It, in essence, follows the paradigm of planning
as satisfiability[Selman & Kautz, 1992], which has emerged
as one of the most effective formulations for optimal plan-
ning. The method of planning as satisfiability first transforms a
STRIPS planning problem into a satisfiability (SAT) problem,
and then solves the SAT problem using a generic SAT solver.

Representative planners under the paradigm of planning as
satisfiability include Blackbox[Kautz & Selman, 1996] and
SATPLAN [Kautz, ]. The latest version of SATPLAN, SAT-
PLAN04, has won the First Place prize in the optimal track of
the Fourth International Planning Competition (IPC4). Despite
its success, the current best realization of planning as satisfia-
bility still has the following limitations.

a) SATPLAN performs aforward level expansion search
that keeps increasing the estimated plan length and for each
fixed length finds a solution or proves the problem unsolvable.
We have noticed that most of the computing time that it spends

on is to prove unsatisfiability, which could be expensive be-
cause the entire search space may need to be explored. This
observation inspires us to search from the opposite direction,
i.e. to reduce the estimated plan length from an upper bound.
When the plan is long, however, finding a feasible solution can
still be expensive. Effective strategies for reducing complexity
are needed.

b) By transforming a planning problem into a SAT prob-
lem and solving the problem in a ”blackbox” fashion by a SAT
solver, the structural and goal information in the planningprob-
lem is discarded. In contrast, heuristic search-based planning
methods typically combine directed forward search with back-
ward chaining to explicitly exploit information in the planning
goals. This motivates us to study and utilize the internal struc-
ture of the SAT encoding.

c) The existing SAT planners solve a SAT problem as a
whole, which becomes prohibitively expensive for large prob-
lems. One objective in the design of MaxPlan is to decompose
a planning problem based on its structure in order to reduce
search complexity.

d) To achieve the optimal time steps, the current realization
of planning as satisfiability follows an incremental schemein
which the number of time steps is increased by one after each
failed iteration. A careful examination of the process of the
current approaches has revealed key insights into this general
planning paradigm. First, the SAT problem instances derived
at different time steps share similar structures. Second, the
knowledge learnt from solving SAT instances for shorter time
steps can be accumulated and used to speed up the processes
for solving SAT instances of longer time steps. However, the
existing SAT planners generate SAT problem instances inde-
pendently from scratch and solve them in isolation so that
knowledge learnt during previous iterations was lost.

The design of MaxPlan aims at overcoming the above limi-
tations.

2 Overall Architecture of MaxPlan
Based on an action-based SAT formulation, MaxPlan employs
a new decomposition scheme to decompose a planning prob-
lem into a series of SAT subproblems, one for each subgoal
variable, in order to reduce the search complexity. Goal-
oriented rules for selecting variables in SAT solvers are intro-
duced to exploit logic structures of planning problems. Other
novel techniques, includingbackward level reduction, accu-
mulative learning, and search space pruning based on a multi-
valued formulation, are also developed and integrated witha



generic SAT solver to further speed up the solution process.
The overall process of MaxPlan works as follows.

1. Estimate an upper bound of the optimal plan length. The
search keeps tightening the upper bound until a plan
length has been proved unsolvable.

2. For a given plan length, compile the input planning prob-
lem into a SAT formulation.

3. Solve the derived SAT problem using a novel SAT solver
integrated with goal-oriented decomposition and search
space pruning. Quit if the current plan depth is proven
unsatisfiable.

4. After a plan depth is solved, use an accumulative learning
scheme for taking advantage of the structural similarities
among the SAT instances. Accumulate the knowledge (in
the form of learnt clauses and pruning rules) to accelerate
the processes of solving sebsequent instances.

5. Reduce the estimated optimal plan length and repeat from
step 2.

MaxPlan significantly differs from the previous SAT-based
planners in the overall direction of plan-length estimation and
inter-level learning. Furthermore, instead of using a generic
”blackbox” SAT solver, MaxPlan integrates in the SAT solver
a number of effective strategies for exploiting the structure of
a planning problem.

3 Backward Level Reduction and Analysis of
Action-Based Encoding

MaxPlan uses an approach to set the initial number of paral-
lel steps which is different from that used by the previous SAT
planners. Since the previous SAT planners use forward level
expansion, they typically apply the Graphplan approach[Blum
& Furst, 1997] to construct a relaxed planning graph to esti-
mate alower bound of the optimal parallel length. In contrast,
since MaxPlan uses backward level reduction, it estimates an
upper bound using a suboptimal planner to find a suboptimal
sequential plan and parallelize it. We use the Fast Forward
planner[Hoffmann & Nebel, 2001] in our current implemen-
tation.

To transform a planning problem into SAT, we use the same
action-based encoding as used by SATPLAN04, which con-
verts all fact variables to action variables.

We have closely studied the action-based SAT encoding. We
classify the clauses into several classes, including theE clauses
that are binary clauses generated from mutual exclusions, the
A clausesthat specifies the dependencies among actions, and
theG clausesthat specifies subgoals.

Most (but not all) variables in E clauses can be instantiated
by applying unit propagation in a SAT solver. In other words,
a majority of independent variables appear in the G clauses.
As a result, the variables in the binary E clauses have a lower
priority to be chosen. Therefore, the three classes of clauses
should be treated differently. The G clauses should be treated
as “core clauses” in SAT solving. In general, the G clauses only
constitute a very small portion (typically less then 2 percents)
of all the clauses. Focusing on branching those variables that
appear in the G clauses first can significantly reduce the search
space in SAT solving.

Most, if not all, existing SAT solvers lack mechanisms for
exploiting structural information of real-world instances and

for identifying independent variables. Identifying problem
structural information is a hard problem. Being generic algo-
rithms, these SAT solvers try to produce conflicts by branching
on shorter clauses (such as heuristic[Li & Anbulagan, 1997] or
the Jeroslow-Wang rule[Hooker & Vinay, 1995]), or attempt
to detect conflicts by applying the locality of conflicts (such as
the VSIDS heuristic[Moskewiczet al., 2001]). These general
heuristics can hardly detect structural properties of a planning
problem.

4 Goal-Oriented Decomposition for SAT
Solving

The majority part of the computation complexity of MaxPlan
lies in solving the SAT problems at different parallel steps.
In our implementation, we use a generic SAT solver, Min-
iSAT [Eén & Biere, 2005], enhanced with our new strategies,
as the SAT engine for MaxPlan. Note that the decomposition
and space pruning strategies proposed in MaxPlan are general
and can be incorporated into other SAT solvers.

As mentioned, SAT problems derived from real-world plan-
ning problems are often highly structured and contain a sub-
stantial portion of variables whose values can be determined
by other variables through unit propagation. In other words,
these variables aredependentvariables. In contrast, those vari-
ables whose values cannot be directly inferred from the assign-
ments of other variables areindependentvariables. Since the
assignments of independent variables determine the valuesof
most dependent variables, the number of assignments that need
to be tried can be reduced significantly if we branch on inde-
pendent variables first. In MaxPlan, independent variablesare
those appearing in the G clauses, and dependent variables are
the ones not in the G clauses.

The complexity of SAT solving can be significantly reduced
if we ignore the assignments of some independent variables.
Therefore, in MaxPlan, we propose agoal-oriented decompo-
sition scheme to decompose the SAT problem into a series of
much simpler SAT subproblems with incremental involvement
of the goal-oriented independent variables.

Suppose that there areN subgoals, we iteratively solveN
subproblems. In solving theith subproblem, we set the vari-
ables for the firsti subgoals true, and set free the other subgoal
variables. After we solve the instance, based on the solution,
we increase the priority scores of all action variables whose
assignments are true by a constant amount in MiniSat in order
to force to branch on these action variable and set them to true
first in solving the next subproblem. Therefore, in each itera-
tion, we focus on solving one subgoal. In this process, we also
try to explore first the partial solution space that is close to the
ones searched in the previous iterations by giving priorities to
the relatedG clauses.

There are several advantages of the goal-oriented decompo-
sition approach. Our preliminary experimental analysis has in-
dicated that after the G variables have been fixed, the problem
can be solved quickly by unit propagation. This means that
the G variables are the most critically constrained variables in
a planning problem. By incrementally increase the number of
active criticalG variables in a series of subproblems, the com-
plexity of solving each subproblem is significantly reduced. As
a result, the total complexity of solving all decomposed sub-
problems is still much smaller than the complexity of solving



the original SAT problem without decomposition.
The proposed goal-oriented decomposition approach is dif-

ferent from incremental planning. A key difficulty of incre-
mental planning is that it fixes the solutions of solved subprob-
lems and often gets stuck at infeasible deadends. Our decom-
position approach, on the contrary, allows backtracking and is
a complete algorithm that can be used to prove unsatisfiability.

5 Search Space Pruning
In addition to goal-oriented decomposition, we develop two
novel strategies to further reduce the search space of SAT solv-
ing. A common feature of the two strategies is that they both
prune the search space by adding more constraints to the prob-
lem formulations.

5.1 Mutual Exclusion Constraints from
Multi-Valued Formulations

In the SAT formulation, the E clauses encode binary mutual
exclusion relations among actions. It is very difficult and ex-
pensive to detect all mutual exclusions, and most previous SAT
planners only detect a small subsets of mutual exclusions. In
MaxPlan, we use a new approach that can generate more mu-
tual exclusions efficiently. The approach uses a multi-valued
domain formulation (MDF) that translates the binary fact rep-
resentation into a more compact representation with multi-
valued variables. Each variable typically represents an invari-
ant group for an object, and the variable can only take one value
in the group at any time. For example, a truck may only be at
one location at any time. The location of a truck is a variable,
and different locations are the values that the variable maytake.

Based on the MDF formulation, we can derive more mu-
tual exclusions among actions. We first derive mutual exclu-
sions among facts. In fact, all the binary facts associated with
a multi-valued variable are mutually exclusive. For example,
at(truck, location1) andat(truck, location2) are mutually ex-
clusive. Based on the mutual exclusions among facts, we fur-
ther derive mutual exclusions among actions based on the orig-
inal definition of mutual exclusion[Blum & Furst, 1997]. The
new mutual exclusions among actions are added to the action-
based SAT formulation as additional constraints to prune in-
feasible regions of the search space. This technique improves
the efficiency in both finding a feasible plan and proving un-
satisfiability.

5.2 Accumulative Learning
An additional technique to further improve the search effi-
ciency is accumulative learning. Typically a SAT solver can
learn during search new redundant clauses which provide addi-
tional pruning power. This mechanism is calledclause learn-
ing, and the derived clauses are calledlearnt clauses. In the
existing SAT planners such as SATPLAN04, learnt clauses are
not inherited across iterations. In each iteration, the SATsolver
learns clauses from scratch.

Since MaxPlan uses an iterative process to search for an op-
timal plan, we note that a SAT instance at any iteration re-
sembles the SAT instance for the previous iteration, exceptfor
some G clauses due to the change of plan length. We take
advantage of such a structural similarity and propose the accu-
mulative learning scheme. This scheme has two key compo-
nents. Instead of re-encoding the whole problem from scratch

after each iteration, we simply modify and patch the previous
encoding to specify the new constraints of the next iteration.
Therefore, the time for encoding can be significantly reduced,
and such saving can be significant for large planning problems.
More importantly, we can retain all the learnt clauses (not re-
lated to goal clauses) in all the previous iterations and re-use
them in the next iteration. As a result, most learnt clauses only
need to be learnt once, which saves running time.

It is important to note that the learnt clauses that are re-
tained for the next iteration may be learnt again in the next
iteration if they were not retained. Most existing efficientSAT
solvers have efficient mechanisms for clause learning that sup-
port managing and deleting learnt clauses intelligently. There-
fore, our accumulative learning scheme incurs very little addi-
tional memory over the original SAT solver.

6 Conclusions
In summary, MaxPlan follows the general paradigm of plan-
ning as satisfiability and incorporates significant extensions.
First, MaxPlan uses backward level reduction instead of the
previous forward expansion approach. Second, MaxPlan uses
a novel goal-oriented decomposition method, developed in this
paper, to greatly improve the efficiency of solving SAT prob-
lems derived from planning. This decomposition method ex-
ploits structures of a planning problem and the effects of dif-
ferent classes of clauses in the SAT encoding. Finally, two new
strategies, MDF-based constraints and accumulative learning,
are developed to further prune the search space.

References
[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast

planning through planning graph analysis.Artificial Intelli-
gence90:281–300.

[Eén & Biere, 2005] Eén, N., and Biere, A. 2005. Effective
preprocessing in SAT through variable and clause elimina-
tion. In SAT.

[Hoffmann & Nebel, 2001] Hoffmann, J., and Nebel, B. 2001.
The FF planning system: Fast plan generation through
heuristic search. J. of Artificial Intelligence Research
14:253–302.

[Hooker & Vinay, 1995] Hooker, J., and Vinay, V. 1995.
Branching rules for satisfiability.J. Automated Reasoning
15:359–383.

[Kautz & Selman, 1996] Kautz, H., and Selman, B. 1996.
Pushing the envelope: Planning, propositional logic, and
stochastic search. InProceedings of AAAI-96, 1194–1201.

[Kautz,] Kautz, H. SATPLAN04: Planning as satisfiability.
IPC4 abstract, 2004.

[Li & Anbulagan, 1997] Li, C., and Anbulagan. 1997. Heuris-
tics based on unit propagation for satisfiability problems.In
Proceedings of IJCAI-97, 366–371.

[Moskewiczet al., 2001] Moskewicz, M. W.; Madigan, C. F.;
Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff: Engi-
neering an Efficient SAT Solver. InProceedings of the 38th
Design Automation Conference (DAC’01).

[Selman & Kautz, 1992] Selman, B., and Kautz, H. 1992.
Planning as satisfiability. InProceedings ECAI-92, 359–
363.


