
POND: The Partially-Observable and Non-Deterministic Planner

Daniel Bryce
Department of Computer Science and Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

dan.bryce@asu.edu

Abstract

This paper describes POND, a planner developed to
solve problems characterized by partial observability
and non-determinism. POND searches in the space of
belief states, guided by a relaxed plan heuristic. Many
of the more interesting theoretical issues showcased
by POND show up within its relaxed plan heuris-
tics. Namely, the exciting topics are defining distance
estimates between belief states, efficiently computing
such distance estimates on planning graphs, and shar-
ing planning graphs and relaxed plans between belief
states.

Introduction

The POND planner solves many types of planning
problems characterized by uncertainty, whether they
are non-deterministic/probabilistic, are non/partially
observable, or have deterministic/uncertain actions.
POND accepts PPDDL-like1 (Younes & Littman 2004)
problem descriptions and generates conformant and
conditional plans. POND searches forward in the space
of belief states, similar to GPT (Bonet & Geffner 2000),
using various search algorithms (A*, AO*, LAO*, En-
forced Hill-Climbing) depending on the problem and
user preferences. To compute heuristics for search,
POND can use several different planning graph tech-
niques. We start by discussing some of the theory that
goes into computing the planning graph heuristics used
by POND, and then describe the planner implementa-
tion.

Theory

Since POND can handle several types of planning
problems, we concentrate on the techniques used for
conformant non-deterministic planning. We refer to
(Bryce, Kambhampati, & Smith 2006a) and (Bryce,
Kambhampati, & Smith 2006b) for additional tech-
niques, not described here.

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1PPDDL extended for various things such as non-
determinism, observations, goal probability thresholds, etc.

Belief State Distance: To search in belief space,
POND estimates the conformant plan distance be-
tween the belief state(s) at the end of its current plan
prefix and a goal belief state. The distance between
belief states is taken as an aggregate measure of the
underlying distances between states in the belief states.
For instance, a possible admissible measure would find
the minimum distance from every state in the current
belief state to a state in the goal belief state, then
take the maximum of these (this is the measure used
by GPT). Since taking the maximum of the minimum
state distances assumes full positive interaction between
the states, we would not account for many of the ac-
tions that differ between the sequences for each state
(i.e., miss independence). Taking the summation of
the minimum state distances would assume full inde-
pendence, but miss the positive interaction. Instead,
we use a measure that exploits both positive interac-
tion and independence. By analogy to plan merging,
we would like to merge the action sequences for each
of the states in the current belief state so that actions
overlap as much as possible (Bryce, Kambhampati, &
Smith 2006a). The resulting merged plan contains all
actions used in common or independently by the dif-
ferent states in the belief state. We can obtain this
measure by computing a classical relaxed plan for each
state in our current belief state and merging the relaxed
plans. However, there may be many states in our belief
state and computing a planning graph for each state is
costly.

Heuristic Computation: In order to compute our
belief state distance measure without constructing mul-
tiple explicit planning graphs, we use a planning graph
generalization, called the Labeled Uncertainty Graph
(LUG) (Bryce, Kambhampati, & Smith 2006a). The
LUG represents multiple explicit planning graphs im-
plicitly. The idea is to use a single planning graph
skeleton to represent common action and proposition
connectivity, and use annotations (labels) that denote
which planning graph components exist in the explicit
planning graphs. Labels are propositional formulas,
whose models correspond to states in the belief state.
We can determine which explicit planning graphs con-
tain a proposition by examining the models of the



proposition’s label. If a state entails the label of the
proposition at level k, the proposition is in the explicit
planning graph for the state at level k.

Using LUG connectivity, we can determine which ac-
tions are needed to support the goal propositions, and
using labels we know when we have chosen enough ac-
tions to support the goals from each of the states in
our belief state. Thus, we can extract a relaxed plan
that represents an implicitly merged plan for each of
the states in our belief state. This relaxed plan indi-
cates the plan distance to transition each of the states
in a belief state to a goal belief state.

State Agnostic Planning Graphs: The LUG im-
plicitly represents a set of explicit planning graphs. Us-
ing a state agnostic planning graph (SAG) (Cushing &
Bryce 2005), a generalization of the LUG, we can build
a LUG for every possible state. The SAG and LUG are
identical except for which states are represented and
how we compute relaxed plans. To extract the relaxed
plan for a belief state from the SAG (assuming the be-
lief state is represented by a propositional formula) we
need to take the conjunction of each label with the belief
state to reveal the LUG for the belief state. Those plan-
ning graph elements where the conjunction is satisfiable
are in the revealed LUG. By computing the SAG, we
construct a single, sometimes costly, LUG whose cost
is amortized over each belief state.

Global Relaxed Plan: Alternative to using the SAG
to compute a relaxed plan for each belief state, we can
compute a global relaxed plan. The global relaxed plan
continues the SAG generalization by making a state ag-
nostic relaxed plan. We extract the global relaxed plan,
which is a relaxed plan for the belief state containing
all states, and then for each belief state encountered in
search we restrict the global relaxed plan to the actions
needed for the belief state. By restricting the global
relaxed plan, we mean that we take the conjunction of
each action’s label in the global relaxed plan with the
belief state formula. Those actions where the conjunc-
tion is satisfiable are in the relaxed plan. The global
relaxed plan is admittedly less accurate than extract-
ing a relaxed plan from the SAG for a specific belief
state, but is very fast to compute.

Lazily Enforced Hill-Climbing: POND uses a
lazily enforced hill-climbing search, guided by three
heuristics: belief state cardinality (Bertoli, Cimatti, &
Roveri 2001), the global relaxed plan and the SAG re-
laxed plan. These heuristics have an increasing com-
putation cost (and accuracy). The basic idea is to the
use the cardinality heuristic in hill-climbing, as long
as it improves the heuristic distance to the goal belief
state. If the cardinality of the current children search
nodes does not decrease, then we re-evaluate the chil-
dren with the global relaxed plan (a slightly more costly,
but better heuristic). If the global relaxed plan cannot
find a better child, then we switch to the SAG relaxed
plan in an A* search rooted at our current search node.

Search:

Hill-Climbing

Heuristic:

Belief State

Cardinality

Search:

Hill-Climbing

Heuristic:

Global Relaxed 

Plan (GRP)

Search:

A*

Heuristic:

SAG Relaxed 

Plan

No Child with 

Lower Cardinality

No Child with 

Lower GRP

Found Child with

Lower GRP

No Children (Hill-Climbing Failed)

Revert to A* 

Found Child with 

Lower SAG

Relaxed Plan

Figure 1: Lazily Enforced Hill-Climbing strategy.

The SAG relaxed plan is the costliest heuristic, but
the most informed. Once the A* search finds a better
cost child, we resume hill-climbing with cardinality. If
search fails, we revert to A* search with the global re-
laxed plan heuristic. The automata in Figure 1 depicts
our search strategy. Since the heuristic landscape de-
fined by cardinality, the global relaxed plan, and SAG
relaxed plan are different, we say the search is lazily
enforced hill-climbing. It is not always the case that
using one heuristic to escape a heuristic plateau of an-
other heuristic decreases the original distance to the
goal belief state. However, since we use the heuristics
in order of increasing accuracy, we are more confident
in the direction chosen by the heuristics even if it means
an increase in the original heuristic distance.

Implementation
POND is implemented in C++ and uses several ex-
isting technologies. It employs the PPDDL parser
(Younes & Littman 2004) for input, the IPP planning
graph construction code (Koehler et al. 1997) for the
LUG, and the CUDD BDD package (Somenzi 1998) for
representing belief states, actions, and labels. POND
resembles MBP (Bertoli et al. 2001) because it uses
BDDs to represent belief states and actions, and uses
BDD operations to symbolically compute the transition
between belief states. POND is perhaps most simi-
lar to KACMBP (Bertoli & Cimatti 2002) because we
use both cardinality and reachability heuristics, how-
ever our reachability heuristics are based on conformant
relaxed plans.

Acknowledgements: This work was supported
by the NSF grant IIS-0308139, the ONR grant
N000140610058, the MCT/NASA summer fellowship
program, the ARCS foundation, an IBM faculty award,
and Arizona State University. We would like to thank
Subbarao Kambhampati, David E. Smith, and William
Cushing for contributing to the theory used in POND.



Much additional thanks is also given to William Cush-
ing for help with implementation.

References
Bertoli, P., and Cimatti, A. 2002. Improving heuristics
for planning as search in belief space. In Proceedings
of AIPS’02.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso,
P. 2001. Planning in nondeterministic domains under
partial observability via symbolic model checking. In
Proceedings of IJCAI’01.
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuris-
tic search + symbolic model checking = efficient con-
formant planning. In Proceedings of IJCAI’01.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP’99.
Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In
Proceedings of AIPS’00.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006a.
Planning graph heuristics for belief space search.
JAIR. (To appear).
Bryce, D.; Kambhampati, S.; and Smith, D. 2006b.
Sequential monte carlo in probabilistic planning reach-
ability heuristics. In Proceedings of ICAPS’06.
Cushing, W., and Bryce, D. 2005. State agnostic
planning graphs. In Proceedings of AAAI’05.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos,
Y. 1997. Extending planning graphs to an adl subset.
In Proceedings of ECP’97.
Somenzi, F. 1998. CUDD: CU Decision Diagram
Package Release 2.3.0. University of Colorado at Boul-
der.
Younes, H., and Littman, M. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains
with probabilistic effects. Technical report, CMU-CS-
04-167, Carnegie Mellon University.


