
Optimal Symbolic PDDL3 Planning with MIPS-BDD

Stefan Edelkamp∗

Computer Science Department
University of Dortmund, Dortmund, Germany

Introduction
State trajectory and plan preference constraints are the two
language features introduced in PDDL3 (Gerevini & Long
2005) for describing benchmarks of the5th international
planning competition.State trajectory constraintsprovide
an important step of the agreed fragment of PDDL towards
the description of temporal control knowledge (Bacchus &
Kabanza 2000) and temporally extended goals (DeGiacomo
& Vardi 1999). They assert conditions that must be met dur-
ing the execution of a plan and are often expressed using
using quantification over domain objects. Annotating goal
conditions and state trajectory constraints withpreferences
modelssoft constraints. For planning with preferences, the
objective function scales the violation of the constraints.

Symbolic exploration based on BDDs (Bryant 1985) acts
on sets of states rather than on singular ones and exploit
redundancies in the joint state representation. BDDs are
directed acyclic automata for the bitvector representation
of a state. The unique representation of a state set as a
BDD is much more memory-efficient than an explicit rep-
resentation for the state set. In MIPS-BDD we make op-
timal BDD solver technology applicable to planning with
PDDL3 domains. We compile state trajectory expressions
to PDDL2 (Fox & Long 2003). The grounded representa-
tion is annotated with propositions that maintain the truth
of preferences and operators that model that the synchro-
nized execution or an associated property automaton. We
contributeCost-Optimal Breadth-First-Searchand adapt it
to the search with preference constraints.

Symbolic Breadth-First Search
Symbolic search is based on satisfiability checking. The
idea is to make use of Boolean functions to avoid (or at
least lessen) the costs associated with the exponential mem-
ory blow-up for the state set involved as problem sizes get
bigger. For propositional action planning problems we can
encode the atoms that are valid in a given planning state in-
dividually by using the binary representation of their ordinal
numbers, or via the bit vector of atoms being true and false.

There are many different possibilities to come up with an
encoding of states for a problem. The more obvious ones

∗The author is supported by the German Research Foundation
(DFG) projectHeuristic SearchEd 74/3

seem to waste a lot of space, which often leads to bad perfor-
mance of BDD algorithms. We implemented the approach
of (Helmert 2004) to infer a minimized finite domain encod-
ing of a propositional planning domain1

Given a fixed-length binary encoding for the state vector
of a search problem, characteristic functions represent state
sets. The function evaluates to true for the binary represen-
tation of a given state vector, if and only if, the state is a
member of that set. As the mapping is 1-to-1, the charac-
teristic function can be identified with the state set itself.
Transitions are formalized as relations, i.e., as sets of tuples
of predecessor and successor states, or, alternatively, as the
characteristic function of such sets. Thetransition relation
has twice as many variables as the encoding of the state. If
x is the binary encoding of a state andx′ is the binary en-
coding of a successor state, thenT (x, x′) evaluates to true.
We observe thatT is the disjunct of all individual state tran-
sitionsTO, with O being an operator inO. What we are
really interested in, is to compute the (partitioned)image∨
O∈O ∃x (TO(x, x′) ∧ Open(x)) of a state set represented

by Openwrt. a transition relationT .
For symbolic breadth-first search, letOpeni be the

boolean representation of a set of states reachable from the
initial stateI in i steps, initialized withOpen0 = I, and
Openi+1(x

′) =
∨
O∈O ∃x (TO(x, x′) ∧ Openi(x)). Note

thatS on the right hand side of the equation depends onx
compared tox′ on the left hand side. Thus, it is necessary to
substitutex′ with x in Openi, written asOpeni[x↔ x′]. To
terminate the exploration, we check, whetherOpeni ∧ G is
equal to thefalsefunction⊥.

In order to retrieve the solution path we assume that all
setsOpen0, . . . ,Openi are available. We start with a state
that is in the intersection ofOpeni and the goalG. This state
is the last one on the sequential optimal solution path. We
take its characteristic functionS into the relational product
with T to compute its potential predecessors. Next we com-
pute the second last state on the optimal solution path in the
intersection ofPredandOpeni−1, and iterate until the entire
solution has been constructed.

1We found an application for further improvement of the en-
coding through a specialized BDD exploration. A set of atoms
a1 ∨ . . . ∨ an can be merged to a fact/SAS+ group if the planning
goal

∑
1≤i6=j≤n

ai∧aj cannot be reached from the initial state. A
BDD backward search terminates usually fast.



We employ BDDs for symbolic exploration. A BDD is
a data structure for a concise and unique representation of
Boolean functions in form of a DAG with a single root node
and two sinks, labeled “1” and “0”, respectively. For eval-
uating the represented function for a given input, a path is
traced from the root node to one of the sinks. The variable
ordering has a large influence on the size of a reduced and
ordered BDD. In an interleaved representation, that we em-
ploy for the transition relation, we alternate betweenx and
x′ variables. Moreover, we have experimented that prefer-
ence variables are better to be queried at the top of the BDD.

BDDs for Bounded Arithmetic Constraints
The computation of a BDDF (x) for a linear objective func-
tion f(x) =

∑n
i=1 aixi, we first compute the minimal and

maximal value thatf can take. This defines the range that
has to be encoded in binary. For the ease of presentation we
assume that we considerxi ∈ {0, 1}.

The work of (Bartzis & Bultan 2006) shows that the BDD
for representingf has at mostO(n

∑n
i=1 ai) nodes and can

be constructed with matching time performance. Even wile
taking the most basic representation, this result improves on
alternative, more expressive structures like ADDs. More-
over, the result generalizes to variablesxi ∈ {0, . . . , 2b}
and the conjunction/disjunction of several linear arithmetic
formulas. This implies that Metric Planning for bounded lin-
ear arithmetic expressions in the preconditions and effects is
actually efficient for BDDs.

The BDD construction algorithm in MIPS-BDD for the
objective function differs from the specialized construction
in (Bartzis & Bultan 2006) but computes the same result.

Symbolic Cost-Optimal Breadth-First Search
We build the binary representation for the objective
function as follows. For goal preferences of type
(preference p φp) we associate a Boolean variablevp
(denoting the violation ofp) and construct the following in-
dicator function:Xp(v, x) = (vp∧φp(x))∨ (¬vp∧φp(x)).

Figure 1 displays the pseudo-code for a symbolic BFS-
exploration incrementally improving an upper boundU on
the solution length. The state sets that are used are repre-
sented in form of BDDs. The search frontier denoting the
current BFS layer is tested for an intersection with the goal,
and this intersection is further reduced according to the al-
ready established bound.

Theorem The latest plan stored by the algorithmCost-
Optimal-Symbolic-BFShas minimal cost.

Proof The algorithm eliminates duplicates and traverses the
entire planning state space. It generates each possible plan-
ning state exactly once. Only inferior states are pruned.

State Trajectory Constraints
State trajectory constraints can be interpreted Linear Tem-
poral Logic (LTL) (Gerevini & Long 2005) and translated
into automata that run concurrent to the search and accept
when the constraint is satisfied (Gastin & Oddoux 2001).
LTL includes temporal modalities likeA for always, F for

Procedure Cost-Optimal-Symbolic-BFS
Input: State space problem with transition relationT

Goal BDDG, and initial BDDI
Output: Optimal solution path is stored

U ←∞
loop

Reach(x′)← I(x′); Open(x′)← I(x)
Intersection(x)← I(x) ∧ G(x)
Bound(v)← F (v) ∧

∨U
i=0[v = i]

Eval(v, x)← Intersection(x) ∧
∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
while (Metric(x) 6= ⊥)

if (Open= ⊥) return ”Exploration completed”
Succ(x′) =

∨
O∈O ∃x TO(x, x′) ∧Open(x)

Open(x)← (Succ(x′) ∧ ¬Reach(x′))[x′ ↔ x]
Reach(x′)← Reach(x′) ∨ Succ(x′)
Intersection(x)← Open(x) ∧ G(x)
Eval(v, x)← Intersection(x) ∧

∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
U ← ConstructAndStoreSolution(Metric(x))− 1

Figure 1: Cost-Optimal BFS Planning Algorithm.

eventually, andU for until. We propose to compile the au-
tomata back to PDDL with each transition introducing a new
operator (Edelkamp 2006). Each automaton state for each
automaton results in an atom. For detecting accepting states
we additionally includeacceptingpropositions. The initial
state of the planning problem includes the start state of the
automaton and an additional proposition if it is accepting.
For all automata, the goal includes their acceptance.

Including state trajectory constraints in the Cost-Optimal
Breadth-First Search algorithm is achieved as follows.

For (hold-after t φ) we impose thatφ is satis-
fied for the search frontier in all stepsi > t. For
(hold-during t1 t2 φ) as similar reasoning applies.

For (sometimes φ) we apply automata-based model
checking to build a (B̈uchi) automata for the LTL formula
Fφ. Let S be the original planning space andAFφ be
the constructed (B̈uchi) automaton for formulaAFφ and
⊗ the cross product between two automata, thenP ←
P ⊗ AFφ andG ← G ∪ {accepting (Aφ)}. The initial
state is extended by the initial state of the automaton, which
in this case is not accepting.

For (sometimes-before φ ψ) the temporal formula
is more complicated, but the reasoning remains the same.
We compileP ← P⊗A(¬φ∧¬ψ)U((¬φ∧ψ)∨(A(¬φ∧¬ψ))) and
adapt the planning goal and the initial state accordingly.

For (always φ) we apply automata theory to construct
P ← P ⊗ AGφ. Alternatively, for all i we could im-
poseOpeni ← Openi ∧ φ in analogy tohold-during
and hold-after . For (at-most-once φ) we assign
the planning problemP to P ⊗ AAφ→(φU(G¬φ))). For
(within t φ) we build the cross productP ← P ⊗ AFφ.
Moreover, we setOpent ← Opent ∧{accepting (AFφ)}.



Preferences for State Trajectory Constraints
For state trajectory constraints that are constructed via au-
tomata theory, we apply the following construction. Instead
of adding the automaton acceptance to the goal state we
combine the acceptance with the violation predicate. If the
automaton accepts then the preference is not violated; if it is
located in a non-accepting state, then it is violated. For ex-
ample, given(preference p (at-most-once φ)) we
explore the cross productP ← P ⊗ AAφ→(φU(G¬φ)). Let
a = {accepting (AAφ→(φU(G¬φ))))}. If a ∈ add(O)
thendel(O) ← del(O) ∪ {vp},add(O) ← add(O) \ {vp}.
If a ∈ del(O) thenadd(O) ← add(O) ∪ {vp},del(O) ←
del(O) \ {vp}. An specialized operatorskip allows to fail
the automata completely. If automaton is ignored once, it
remains invalid for the rest of the computation.

Memory Limitation
BDDs already save space for large state sets. For purely
propositional domains we additionally apply bidirectional
symbolic BFS, which is often much faster as unidirectional
search. Symbolic BFS is supposed to have small search
frontiers (Jensenet al. 2006).

One implemented idea is an extension toFrontier-
Search(Korf et al. 2005), which has been proposed for undi-
rected or directed acyclic graph structures. In more general
planning problems we have established that a duplicate de-
tection scope (a.k.a.locality) of 4 is sufficient to guarantee
termination forCost-Optimal-Symbolic-BFSin the compe-
tition domains. Moreover, we do not store any intermedi-
ate BDD layer that corresponds to state trajectory automata
transitions. Only the layers that correspond to the original
unconstrained state space are stored.

Our competition results are eitherstep-optimal(Proposi-
tional domains) orcost-optimal(Simple Preferences/ Qual-
itative Preferencesdomains). We have not yet implemented
support for metric and temporal planning operators. There
is 3 restrictions to the optimality in state-trajectory domains.

1. We do not supportpreference preconditions. Actually, we
can parse and process the conditions, but as the domain of
theis-violated variables is in fact unbounded this af-
fects a possible encoding as a BDD. Nonetheless, as these
variables are monotone increasing, it is not difficult to de-
sign a specialized solution for them.

2. We assume that the automaton that is built does not affect
the optimality. An automaton that constructed via the LTL
translation in LTL2BA is in fact optimized in the number
of states and not for the preserving path lengths. On the
other hand, there some LTL converters that preserve opti-
mal paths (Schuppan & Biere 2005).

3. The exploration is terminated by limited time or space re-
sources. In this case the reported plans for preference do-
mains are optimal only wrt. the search depth reached.

For larger problems, we looked at suboptimal solutions.
We have tested an in-built support for canceling the explo-
ration if the BDD node count for optimal search exceeds
a threshold on BDD nodes that corresponds to the limi-
tations of main memory. Subsequently, the entire mem-

ory for all BDD nodes is released. We successfully tested
two strategies,heuristic symbolic searchbased on pattern
databases andsymbolic beam-searchremoving unpromising
states. For the competition, we switched this feature off.

Conclusion
We have devised an optimal propositional PDDL3 planning
algorithm based on BDDs. Besides using the same LTL2BA
converter, the algorithm shares no code with our explicit-
state planner MIPS-XXL. As the approach for state trajec-
tory constraints relies on a translation to LTL, it has the po-
tential to deal with much larger temporal constraint language
expressiveness than currently under consideration.

After the competition, we will likely extend the above
planning approach to general domains with linear expres-
sions in the actions. As a prerequisite to apply (Bartzis &
Bultan 2006) numerical state variables have to fit into some
finite domains. Most of the metric planning domains around
belong to this group. Moreover, we encountered that model
checkers like nuSMV and CadenceSMV can already deal
with LTL formula. For this cases, the LTL formula is di-
rectly encoded into a transition relation without using an in-
termediate explicit automaton (Schuppan & Biere 2005).

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Artificial
Intelligence116:123–191.
Bartzis, C., and Bultan, T. 2006. Efficient BDDs for
bounded arithmetic constraints.STTT8(1):26–36.
Bryant, R. E. 1985. Symbolic manipulation of boolean
functions using a graphical representation. InACM/IEEE
DAC, 688–694.
DeGiacomo, G., and Vardi, M. Y. 1999. Automata-
theoretic approach to planning for temporally extended
goals. InECP, 226–238.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. InICAPS, To Appear.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Gastin, P., and Oddoux, D. 2001. Fast LTL to Büchi au-
tomata translation. InCAV, 53–65.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical report, Department of
Electronics for Automation, University of Brescia.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InICAPS, 161–170.
Jensen, R.; Hansen, E.; Richards, S.; and Zhou, R. 2006.
Memory-efficient symbolic heuristic search. InICAPS, To
Appear.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search.Journal of the ACM52(5):715–748.
Schuppan, V., and Biere, A. 2005. Shortest counterex-
amples for symbolic model checking of LTL with past. In
TACAS, 493–509.


