
Probabilistic Planning via Linear Value-approximation of First-order MDPs

Scott Sanner
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

ssanner@cs.toronto.edu

Craig Boutilier
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

cebly@cs.toronto.edu

Abstract

We describe a probabilistic planning approach that trans-
lates a PPDDL planning problem description to a first-order
MDP (FOMDP) and uses approximate solution techniques
for FOMDPs to derive a value function and corresponding
policy. Our FOMDP solution techniques represent the value
function linearly w.r.t. a set of first-order basis functions and
compute suitable weights using lifted, first-order extensions
of approximate linear programming (FOALP) and approxi-
mate policy iteration (FOAPI) for MDPs. We additionally de-
scribe techniques for automatic basis function generation and
decomposition of universal rewards that are crucial to achieve
autonomous and tractable FOMDP solutions for many plan-
ning domains.

From PPDDL to First-order MDPs
It is straightforward to translate a PPDDL [12] planning do-
main into the situation calculus representation used for first-
order MDPs (FOMDPs); the primary part of this translation
requires the conversion of PPDDL action schemata to ef-
fect axioms in the situation calculus, which are then com-
piled into successor-state axioms [8] used in the FOMDP
description. In the following algorithm description, we will
assume that we are given a FOMDP specification and we
will describe techniques for approximating its value func-
tion linearly w.r.t. a set of first-order basis functions. From
this value function it is straightforward to derive a first-order
policy representation that can be used for action selection in
the original PPDDL planning domain.

Linear Value Approximation for FOMDPs
The following explanation assumes the reader is famil-
iar with the FOMDP formalism and operators used in
Boutilier, Reiter and Price [2] and extended by Sanner and
Boutilier [9]. In the following text, we will refer to function
symbols Ai(~x) that correspond to parameterized actions in
the FOMDP; for every action and fluent, we expect that a
successor state axiom has been defined. The reader should
be familiar with the notation and use of the rCase, vCase,
and pCase case statements for representing the respective
FOMDP reward, value, and transition functions. The reader
should also be familiar with the case operators ⊕, 	, ∪, and
Regr(·) [2] as well as FODTR(·), BA(~x)(·), and BA(·) [9].

Value Function Representation
Following [9], we represent a value function as a weighted
sum of k first-order basis functions in case statement for-
mat, denoted bCasej(s), each containing a small number of
formulae that provide a first-order abstraction of state space:

vCase(s) = ⊕k
i=1 wi · bCasei(s) (1)

Using this format, we can often achieve a reasonable ap-
proximation of the exact value function by exploiting the ad-
ditive structure inherent in many real-world problems (e.g.,
additive reward functions or problems with independent sub-
goals). Unlike exact solution methods where value functions
can grow exponentially in size during the solution process
and must be logically simplified [2], here we maintain the
value function in a compact form that requires no simplifi-
cation, just discovery of good weights.

We can easily apply the FOMDP backup operator
BA(~x) [9] to this representation and obtain some simplifica-
tion as a result of the structure in Eq. 1. Exploiting the prop-
erties of the Regr and ⊕ operators, we find that the backup
BA(~x) of a linear combination of basis functions is simply
the linear combination of the first-order decision-theoretic
regression (FODTR) of each basis function [9]:

B
A(~x)(⊕i wibCasei(s)) = (2)

rCase(s, a) ⊕ (⊕i wiFODTR(bCasei(s), A(~x)))

A corresponding definition of BA follows directly [9]. It
is important to note that during the application of these oper-
ators, we never explicitly ground states or actions, in effect
achieving both state and action space abstraction.

First-order Approximate Linear Programming
First-order approximate linear programming (FOALP) was
introduced by Sanner and Boutilier [9]. Here we present a
linear program (LP) with first-order constraints that general-
izes the solution from MDPs to FOMDPs:

Variables: wi ; ∀i ≤ k

Minimize:
k

∑

i=1

wi

∑

〈φj ,tj〉∈bCasei

tj

|bCasei|

Subject to: 0 ≥ B
A
max(⊕

k
i=1 wi · bCasei(s))

	 (⊕k
i=1 wi · bCasei(s)) ; ∀ A, s (3)

The objective of this LP requires some explanation. If
we were to directly generalize the objective for MDPs to
that of FOMDPs, the objective would be ill-defined (it would
sum over infinitely many situations s). To remedy this, we
suppose that each basis function partition is chosen because
it represents a potentially useful partitioning of state space,
and thus sum over each case partition.

This LP also contains a first-order specification of con-
straints, which somewhat complicates the solution. Before
tackling this, we introduce a general first-order LP format
that we can reuse for approximate policy iteration:

Variables: v1, . . . , vk ;

Minimize: f(v1, . . . , vk)

Subject to: 0 ≥ case1,1(s) ⊕ . . . ⊕ case1,n(s) ; ∀ s (4)

:

0 ≥ casem,1(s) ⊕ . . . ⊕ casem,n(s) ; ∀ s

The variables and objective are as defined in a typical LP,
the main difference being the form of the constraints. While
there are an infinite number of constraints (i.e., one for ev-
ery situation s), we can work around this since case state-
ments are finite. Since the value ti for each case partition
〈φi(s), ti〉 is piecewise constant over all situations satisfying
φi(s), we can explicitly sum over the casei(s) statements in
each constraint to yield a single case statement. For this
“flattened” case statement, we can easily verify that the con-
straint holds in the finite number of piecewise constant parti-
tions of the state space. However, generating the constraints
for each “cross-sum” can yield an exponential number of
constraints. Fortunately, we can generalize constraint gener-
ation techniques [10] to avoid generating all constraints. We
refer to [9] for further details. Taken together, these tech-
niques yield a practical FOALP solution to FOMDPs.

First-order Approximate Policy Iteration
We now turn to a first-order generalization of approximate
policy iteration (FOAPI). Policy iteration requires that a suit-
able first-order policy representation be derivable from the
value function vCase(s). Assuming we have m parame-
terized actions {A1(~x), . . . , Am(~x)}, we can represent the
policy πCase(s) as:

πCase(s) = max(
⋃

i=1...m

B
Ai(vCase(s))) (5)

Here, BAi(vCase(s)) represents the values that can be
achieved by any instantiation of the action Ai(~x) and the
max case operator ensures that the highest possible value is
assigned to every situation s. For bookkeeping purposes, we
require that each partition 〈φ, t〉 in BAi(vCase(s)) maintain
a mapping to the action Ai that generated it, which we de-
note as 〈φ, t〉 → Ai. Then, given a particular world state s
at run-time, we can evaluate πCase(s) to determine which
policy partition 〈φ, t〉 → Ai is satisfied in s and thus, which
action Ai should be applied. If we retrieve the bindings of
the existentially quantified action variables in φ (recall that
BAi existentially quantifies these), we can easily determine
the instantiation of action Ai prescribed by the policy.

For our algorithms, it is useful to define a set of case
statements for each action Ai that is satisfied only in the

world states where Ai should be applied according to
πCase(s). Consequently, we define an action restricted pol-
icy πCaseAi

(s) as follows:

πCaseAi
(s) = {〈φ, t〉|〈φ, t〉 ∈ πCase(s) and 〈φ, t〉 → Ai}

Following the approach to approximate policy iteration
for factored MDPs provided by Guestrin et al [4], we can
generalize approximate policy iteration to the first-order
case by calculating successive iterations of weights w

(i)
j that

represent the best approximation of the fixed point value
function for policy πCase

(i)(s) at iteration i. We do this by
performing the following two steps at every iteration i: (1)
Obtaining the policy πCase(s) from the current value func-
tion and weights (

∑k
j=1 w

(i)
j bCasej(s)) using Eq. 5, and (2)

solving the following LP in the format of Eq. 4 that deter-
mines the weights of the Bellman error minimizing approx-
imate value function for policy πCase(s):

Variables: w
(i+1)
1 , . . . , w

(i+1)
k

Minimize: φ
(i+1) (6)

Subject to: φ
(i+1) ≥

∣

∣

∣
πCaseA(s) ⊕⊕k

j=1[w
(i+1)
j bCasej(s)]

	⊕k
j=1w

(i+1)
j (BA

maxbCasej)(s)
∣

∣

∣
; ∀A, s

We’ve reached convergence if π(i+1) = π(i). If policy
iteration converges, the loss bounds from [4] generalize di-
rectly to the first-order case.

Greedy Basis Function Generation
The use of linear approximations requires a good set of basis
functions that span a space that includes a good approxima-
tion to the value function. While some work has addressed
the issue of basis function generation [7; 5], none has been
applied to RMDPs or FOMDPs. We consider a basis func-
tion generation method that draws on the work of Gretton
and Thiebaux [3], who use inductive logic programming
(ILP) techniques to construct a value function from sampled
experience. Specifically, they use regressions of the reward
as candidate building blocks for ILP-based construction of
the value function. This technique has allowed them to gen-
erate fully or k-stage-to-go optimal policies for a range of
Blocks World problems.

We leverage a similar approach for generating candi-
date basis functions for use in the FOALP or FOAPI so-
lution techniques. If some portion of state space φ has
value v > τ in an existing approximate value function
for some nontrivial threshold τ , then this suggests that
states that can reach this region (i.e., found by Regr(φ)
through some action) should also have reasonable value.
However, since we have already assigned value to φ, we
want the new basis function to focus on the area of state
space not covered by φ. Consequently, we negate φ and
conjoin it with Regr(φ) yielding the new basis function
[¬φ ∧ Regr(φ) : 1; φ ∨ ¬Regr(φ) : 0]. The “orthogonal-
ity” of newly generated basis functions also allows for com-
putational optimizations since many combinations of basis
function partitions are mutually exclusive and thus need not
be examined.

Handling Universal Rewards
In first-order domains, we are often faced with univer-
sal reward expressions that assign some positive value to
the world states satisfying a formula of the general form
∀y φ(y, s), and 0 otherwise. For instance, in a logistics
problem, we can use a predicate Dst(t, c) to indicate that
truck t is at city c and a fluent TAt(t, c, s) to indicate that
truck t is at city c in situation s. Then a reward may be
given for having all trucks at their assigned destination:
∀t, cDst(t, c) → TAt(t, c, s). One difficulty with such re-
wards is that our basis function approach provides a piece-
wise constant approximation to the value function (i.e., each
basis function aggregates state space into regions of equal
value, with the linear combination simply providing con-
stant values over somewhat smaller regions). However, the
value function for problems with universal rewards typically
depends (often in a linear or exponential way) on the num-
ber of domain objects of interest. For instance, in our exam-
ple, value at a state depends on the number of trucks not at
their proper destination (since that impacts the time it will
take to obtain the reward). Unfortunately, this cannot be
represented concisely using the piecewise constant decom-
position offered by first-order basis functions. As noted by
Gretton and Thiebaux [3], effectively handling universally
quantified rewards is one of the most pressing issues in the
practical solution of FOMDPs.

To address this problem we adopt a decompositional ap-
proach, motivated in part by techniques for additive rewards
in MDPs [1; 11; 6; 7]. Intuitively, given a goal-oriented re-
ward that assigns positive reward if ∀yG(y, s) is satisfied,
and zero otherwise, we can decompose it into a set of ground
goals {G(~y1), . . . , G(~yn)} for all possible ~yj in a ground do-
main of interest. If we reach a world state where all ground
goals are true, then we have satisfied ∀yG(y, s).

Of course, our methods solve FOMDPs without knowl-
edge of the specific domain, so the set of ground goals that
will be faced at run-time is unknown. So in the offline solu-
tion of the MDP we assume a a generic ground goal G(~y∗)
for a “generic” object vector ~y∗. It is easy to construct
an instance of the reward function rCase(s) for this single
goal, and solve for this simplified generic goal using FOALP
or FOAPI. This produces a value function and policy that
assumes that ~y∗ is the only object vector of interest (i.e.,
satisfying relevant type and preconditions) in the domain.
From this, we can also derive the optimal Q-function for the
simplified “generic” domain (and action template Ai(~x)):
QG(~y∗)(Ai(~x), s) = BAi(vCase(s)).1 Intuitively, given a
ground state s, the optimal action for this generic goal can
be determined by finding the ground Ai(~x

∗) for this s with
max Q-value.

With the solution (i.e., optimal Q-function) of a generic
goal FOMDP, we now address the online problem of action
selection for a specific domain instantiation. Assume a set of
ground goals {G(~y1), . . . , G(~yn)} corresponding to a spe-
cific domain given at run-time. If we assume that (typed)

1Since the BA operator can often retain much of the additive
structure in the linear approximation of vCase(s) [9], representa-
tion and computation with this Q-function is very efficient.

domain objects are treated uniformly in the uninstantiated
FOMDP, as is the case in many logistics and planning prob-
lems, then we obtain the Q-function for any goal G(~yj) by
replacing all ground terms ~y∗ with the respective terms ~yj in
QG(~y∗)(Ai(~x), s) to obtain QG(~yj)(Ai(~x), s).

Action selection requires finding an action that maximizes
value w.r.t. the original universal reward. Following [1;
6], we do this by treating the sum of the Q-values of any
action in the subgoal MDPs as a measure of its Q-value
in the joint (original) MDP. Specifically, we assume that
each goal contributes uniformly and additively to the re-
ward, so the Q-function for a entire set of ground goals
{G(~y1), . . . , G(~yn)} determined by our domain instantia-
tion is just

∑n
j=1

1
n
QG(~yj)(Ai(~x), s). The action selection

(at run-time) in any ground state is realized by choosing that
action with maximum joint Q-value. Naturally, we do not
want to explicitly create the joint Q-function, but an effi-
cient scoring technique that evaluates potentially useful ac-
tions by iterating through the individual Q-functions is very
straightforward.

While this additive and uniform decomposition may not
be appropriate for all domains with goal-oriented universal
rewards, we have found it to be highly effective for the Box-
World logistics domain from the ICAPS 2004 probabilistic
planning competition. And while this approach can only
currently handle rewards with universal quantifiers, this re-
flects the form of many practical planning problems.

References
[1] C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal

decomposition of Markov decision processes: Toward a syn-
thesis of classical and decision theoretic planning. IJCAI-97,
pp.1156–1162, Nagoya, 1997.

[2] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic pro-
gramming for first-order MDPs. IJCAI-01, 2001.

[3] C. Gretton and S. Thiebaux. Exploiting first-order regression
in inductive policy selection. UAI-04, 2004.

[4] C. Guestrin, D. Koller, R. Parr, and S. Venktaraman. Efficient
solution methods for factored MDPs. JAIR, 2002.

[5] S. Mahadevan. Samuel meets amarel: Automating value
function approximation using global state space analysis.
AAAI-05, pp.1000–1005, Pittsburgh, 2005.

[6] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. P. Kael-
bling, T. Dean, and C. Boutilier. Solving very large weakly
coupled Markov decision processes. AAAI-98, 1998.

[7] P. Poupart, C. Boutilier, R. Patrascu, and D. Schuurmans.
Piecewise linear value function approximation for factored
MDPs. AAAI 02, pp.292–299, Edmonton, 2002.

[8] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
2001.

[9] S. Sanner and C. Boutilier. Approximate linear programming
for first-order MDPs. UAI 2005), Edinburgh, 2005.

[10] D. Schuurmans and R. Patrascu. Direct value approximation
for factored MDPs. NIPS-2001, Vancouver, 2001.

[11] S. P. Singh and D. Cohn. How to dynamically merge Markov
decision processes. NIPS-98, 1998.

[12] H. Younes and M. Littman. PPDDL: The probabilistic plan-
ning domain definition language, 2004.

